Bayesian Latent Class Models in Malaria Diagnosis
نویسندگان
چکیده
AIMS The main focus of this study is to illustrate the importance of the statistical analysis in the evaluation of the accuracy of malaria diagnostic tests, without admitting a reference test, exploring a dataset (n=3317) collected in São Tomé and Príncipe. METHODS Bayesian Latent Class Models (without and with constraints) are used to estimate the malaria infection prevalence, together with sensitivities, specificities, and predictive values of three diagnostic tests (RDT, Microscopy and PCR), in four subpopulations simultaneously based on a stratified analysis by age groups (< 5, ≥ 5 years old) and fever status (febrile, afebrile). RESULTS In the afebrile individuals with at least five years old, the posterior mean of the malaria infection prevalence is 3.2% with a highest posterior density interval of [2.3-4.1]. The other three subpopulations (febrile ≥ 5 years, afebrile or febrile children less than 5 years) present a higher prevalence around 10.3% [8.8-11.7]. In afebrile children under-five years old, the sensitivity of microscopy is 50.5% [37.7-63.2]. In children under-five, the estimated sensitivities/specificities of RDT are 95.4% [90.3-99.5]/93.8% [91.6-96.0]--afebrile--and 94.1% [87.5-99.4]/97.5% [95.5-99.3]--febrile. In individuals with at least five years old are 96.0% [91.5-99.7]/98.7% [98.1-99.2]--afebrile--and 97.9% [95.3-99.8]/97.7% [96.6-98.6]--febrile. The PCR yields the most reliable results in four subpopulations. CONCLUSIONS The utility of this RDT in the field seems to be relevant. However, in all subpopulations, data provide enough evidence to suggest caution with the positive predictive values of the RDT. Microscopy has poor sensitivity compared to the other tests, particularly, in the afebrile children less than 5 years. This type of findings reveals the danger of statistical analysis based on microscopy as a reference test. Bayesian Latent Class Models provide a powerful tool to evaluate malaria diagnostic tests, taking into account different groups of interest.
منابع مشابه
Rapid Antigen Detection Tests for Malaria Diagnosis in Severely Ill Papua New Guinean Children: A Comparative Study Using Bayesian Latent Class Models
BACKGROUND Although rapid diagnostic tests (RDTs) have practical advantages over light microscopy (LM) and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR)-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold stan...
متن کاملDetection of Plasmodium Vivax by Nested PCR in marious areas of western north of Iran
Introduction: Malaria is one of the most important parasitic diseases in tropical and sub-tropical areas of the world and kills a large number of People annually. Diagnosis of the disease is preformed by microscopic and molecular methods. This study has been designed for detecting of latent/sub-patent infection caused by plasmodium vivax in individuals with history of vivax malaria without an...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملApplication of Bayesian Latent Variable Model for Early Detection of Gestational Diabetes Mellitus Without A Perfect Reference Standard Test by β‐human Chorionic Gonadotropin
Background and Objectives: Gestational diabetes mellitus (GDM) is a medical problem in pregnancy, and its late diagnosis can cause adverse effects in the mother and fetus. The purpose of this research was to estimate the accuracy parameters of a biomarker for early prediction of gestational diabetes in the absence of a perfect reference standard test. Methods: This study was conducted in 52...
متن کامل